The generator matrix 1 0 1 X^2+X 1 0 1 X^2+X 1 0 1 X^2+X 1 X^2 1 X^2 X 0 1 X^2+X 1 0 1 X^2+X 1 0 1 X^2+X 1 X^2 1 X X^2 1 0 0 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 0 0 0 X^2 X^2 X^2 X^2 0 X^2 X^2 0 0 0 0 X^2 0 X^2 generates a code of length 17 over Z2[X]/(X^3) who´s minimum homogenous weight is 16. Homogenous weight enumerator: w(x)=1x^0+190x^16+64x^20+1x^32 The gray image is a linear code over GF(2) with n=68, k=8 and d=32. As d=32 is an upper bound for linear (68,8,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 8. This code was found by Heurico 1.16 in 41.5 seconds.